Impacts and Interactions: Deer and Southfield's Ecosystems

 \cdot ECOLOGICAL MONITORING \cdot CONSULTING \cdot WRITING \cdot

Jacqueline Courteau, Ph.D. Ecologist & Natural Resources Consultant jbcourteau@gmail.com

Overview

- Deer impacts on plant communities
 - Background
 - Research findings in Southfield
 - Implications
- Deer vs. other threats
- Options for managing deer impacts


Overview

- Deer impacts on plant communities

 Background
 - Research findings in Southfield
 - Implications
- Deer vs. other threats
- Options for managing deer impacts

Direct effects: deer eat and damage plants in other ways

 Deer are generalist browsers that damage or remove plant parts, whole plants, flowers, & fruits (consumptive effects)

Trampling & bedding

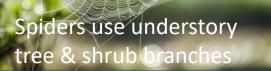
Direct impacts on individual plants

• Mortality

- Outright: plant uprooted, broken off, mostly browsed
- Delayed: browsing reduces resources, increases susceptibility to drought, disease, pests
- Reduced growth (slow to none)
 - Prevent tree saplings from escaping "molar zone" 0.5–1.5 m (observed: 0.05–2.25 m)
 - Forest regeneration declines
- Reproduction reduced or prevented
 Fewer flowers, fruit produced

Impacts on individuals lead to impacts on populations, species

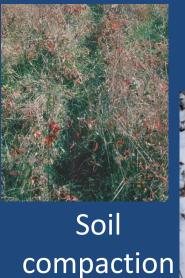
- Reduced growth may delay reproduction
 e.g., spring flora <u>spp. need 7–15 years to bloom</u>
- Reduced flowering may lead to reduced pollination, fruit set (density effects)
- Reduced fruiting, fruit predation may lead to population declines, local disappearance
- Species range may decline



By directly affecting plants, deer indirectly affect other species

- Communities or food webs including multiple interacting species
- Deer browsing can affect
 Flowers for pollinators
 - Fruit for birds, small mammals
 - Food (leaves, fruit) for insects that birds eat
 - Web sites for spiders that birds eat
 - Nest sites for forest birds
- Ecosystems (nutrient and water cycling)

Native bees and wild geranium


Various songbird species eat ants, bees, spiders that rely on plants that deer eat

Stock photos from internet sources

Community & ecosystem impacts harder to assess

- "Non-consumptive effects" like soil compaction, reduced vegetation affects microclimate—plants more susceptible to drought
- Disturbed soil: seed sites for weeds; erosion
- Deer disperse seeds—but often weeds, invasive species
- Nutrient addition, pH changes; alters N cycling

Nutrient addition

Many studies have found deer impacts on forest plants

- Declining tree regeneration
- Decreased native shrub, wildflower diversity, abundance, flowering, reproduction
 - 85% of forest biodiversity is in species other than trees!
- Declines of sensitive species (orchids, trilliums, others)

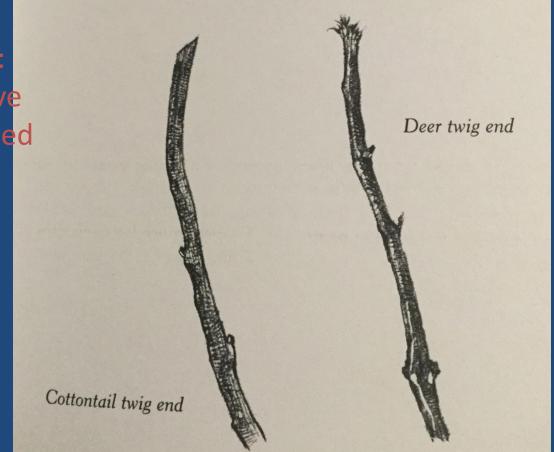
Waller & Alverson 1997, Rooney 2001, McShea et al. 2003, Rawinski 2008, Frerker & Waller 2014, Pendergast et al. 2016, Averill et al. 2017, Waller et al. 2017

Deer affect forest food webs

- Declines in forest arthropods (affects birds)
- Altered food, habitat, nesting sites for birds; songbird declines
- Seed dispersal of invasives (including longdistance transport)
- Increase in invasives with differential herbivory or recovery can further affect habitat

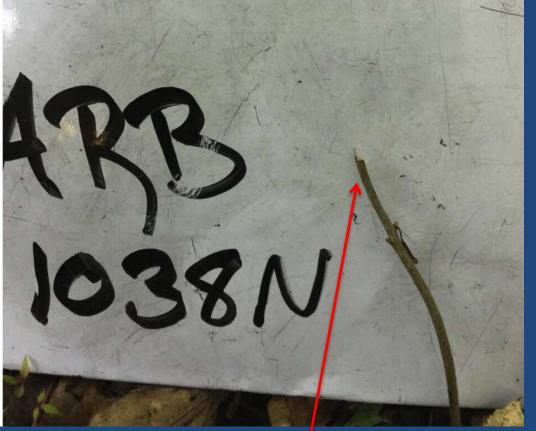
DeCalesta 1994; Waller & Alverson 1997, Rooney 2001, Rawinski 2008, Frerker & Waller 2014

Overview

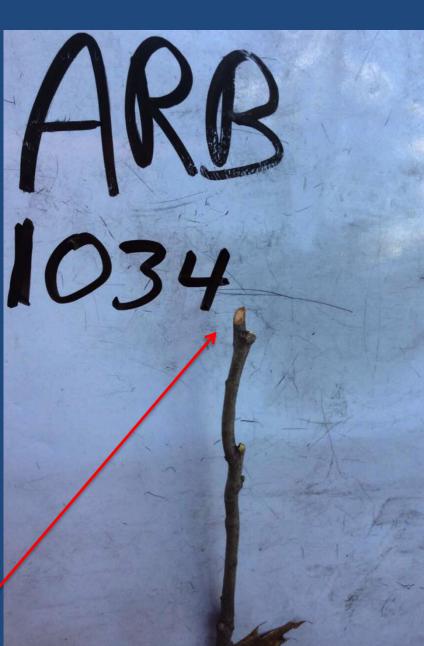

- Deer impacts on plant communities
 - Background
 - Research findings in Southfield: How deer are affecting...
 - Trees
 - Wildflowers?
 - Rare species
 - Implications
- Deer vs. other threats
- Options for managing deer impacts

How are deer affecting trees and shrubs in Southfield parks?

- Preliminary browse damage survey 2017
- Experimental study 2018–19
 - Red oak seedlings grown from MI acorns
 - 24+ seedlings transplanted into each of 5 parks
 - Seedlings tagged, monitored for deer damage 3–4 times during year
 - Offers standardized way to compare impacts
- Permanent plots to track tree growth, 2018–19


How do we know it's deer browse?

Rabbit, woodchuck: Incisors leave cleanly angled mark, 45°


Deer: Lack incisors; edges are shredded, not cleanly angled; edge often crimped

Also squirrels, chipmunks, voles, mice

Deer browse: shreddy

Rabbit browse: angled

2017 browse damage surveys

Berberian Woods

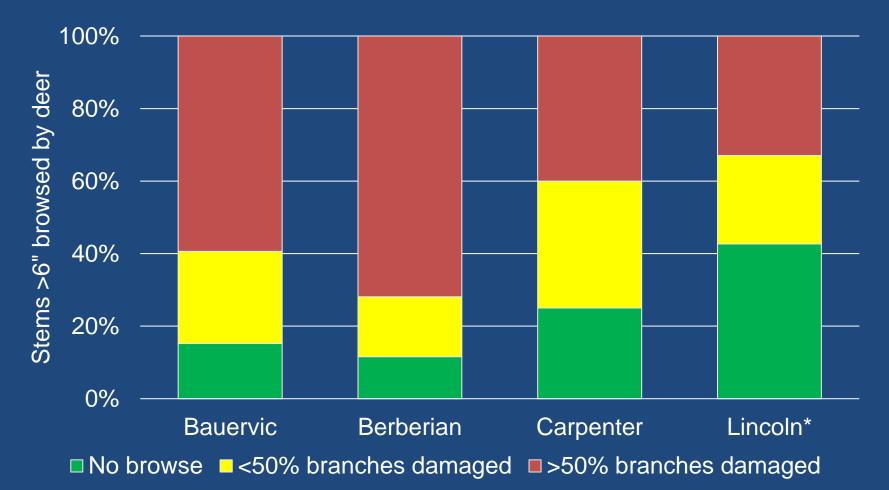
- \square 88% of woody plants browsed by deer
- □ 72% have half or more branches damaged
- \Box Sensitive species: Bladdernut
 - $_{\odot}\,100\%$ of stems browsed
 - $\circ\,96\%$ have half or more branches damaged
 - ${\rm \odot}\,20\%$ show signs of dieback
 - ${\rm \circ}\,\text{22\%}$ dead

Lincoln Woods

- $\Box\,57\%$ of woody plants browsed by deer
- □ 33% have half or more branches damaged
- \Box 15% show signs of dieback

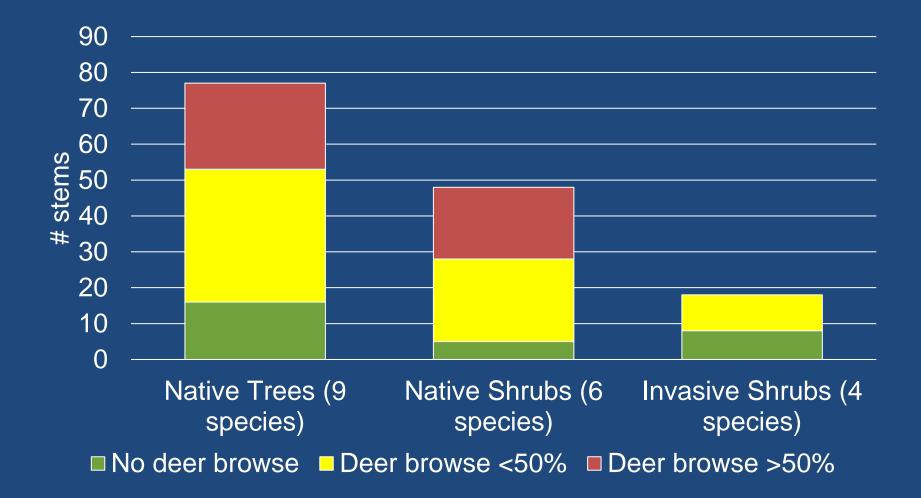
Valley Woods

• 88% of shrub stems deer browsed

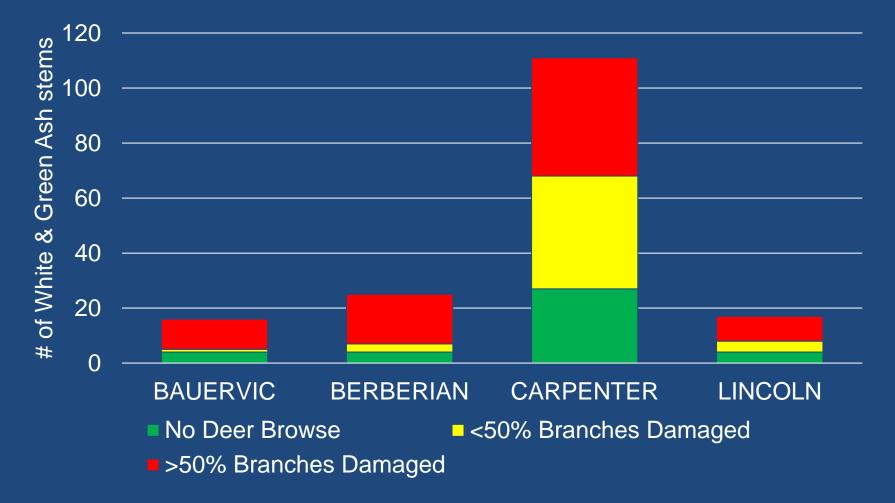

Carpenter Lake

75% of woody plants browsed by deer
40% have half or more branches damaged
23% show signs of dieback

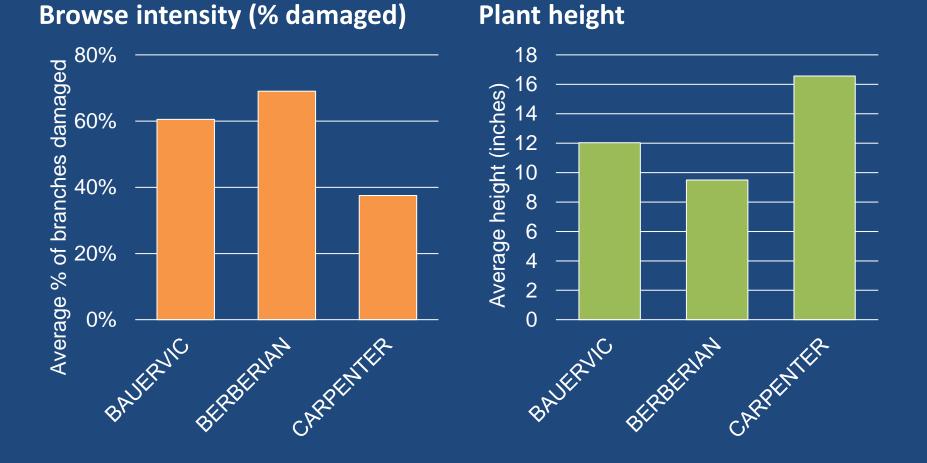
Bauervic Woods


- $\square\,85\%$ of woody plants browsed by deer
- $\Box\,59\%$ have half or more branches damaged
- \Box 39% show signs of dieback

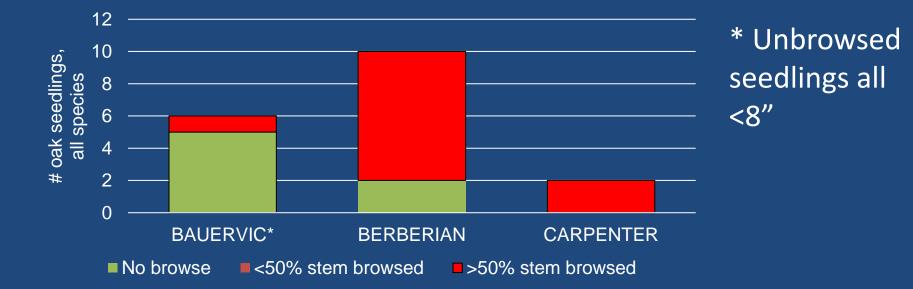
Deer browse on trees and shrubs in the "molar zone" (6" to 6')



Damage to >50% of branches significantly increases mortality risk

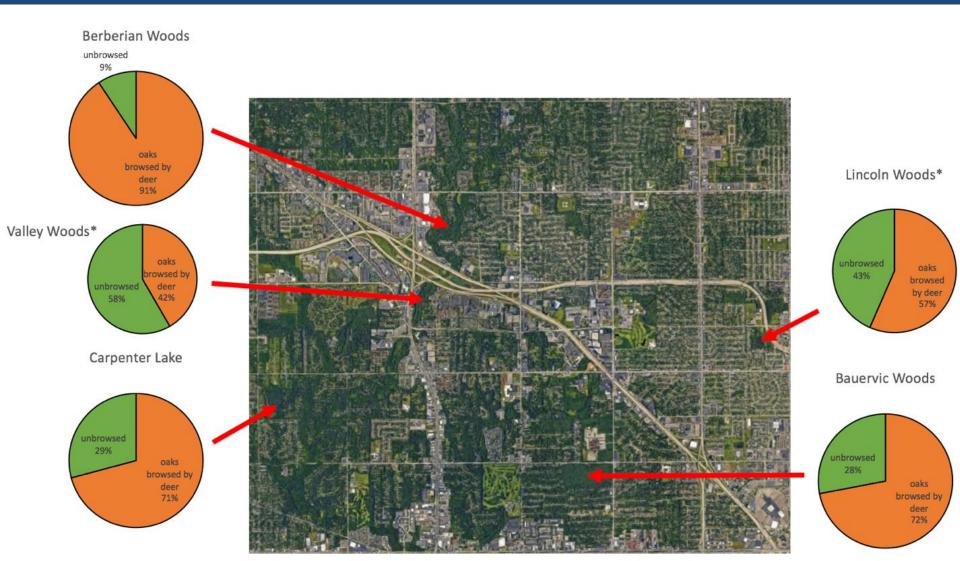

Bauervic (175 stems)

White and Green Ash (found in all parks)



Intense browsing reduces ash seedling/sapling size

What about oaks? Seedlings rare, mostly deer browsed


742 square meters assessed; 1041 woody plant stems examined: just 19 oak seedlings

Different oak species common to dominant in these forests, providing food for over 400 species of insects—which in turn feed birds.

Red oak experimental seedlings 2018–2019

Deer browse at all sites was >15%...

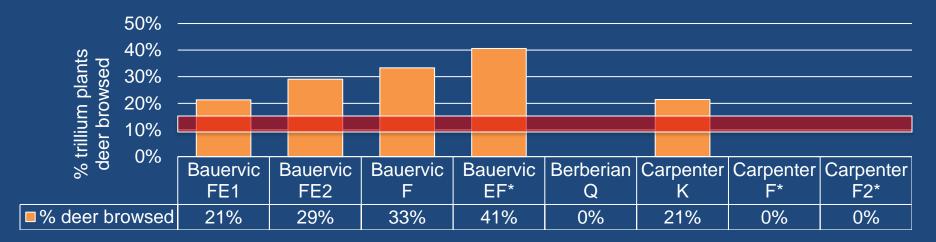
... the level over which oak regeneration is likely to fail (Blossey 2017)

How are deer affecting wildflowers?

- Trillium
- False Solomon's seal (False spikenard)
- Doll's-eyes
- Bladdernut

Why study deer impacts on trillium?

- Previous local studies, A2 observations of impacts
- Useful browse indicator
 - Decreased height (Anderson 1994)
 - Flowering rates <30% suggested as indicator that deer impacts are too high (Pavlovic 2014)
 - Observational & demographic modeling studies: browse rates >10–15% lead to decline
 - (Knight et al. 2003, 2004, 2009; Rooney & Gross 2003)

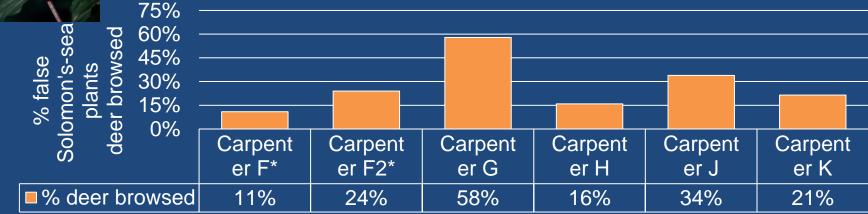

Hard to see absence

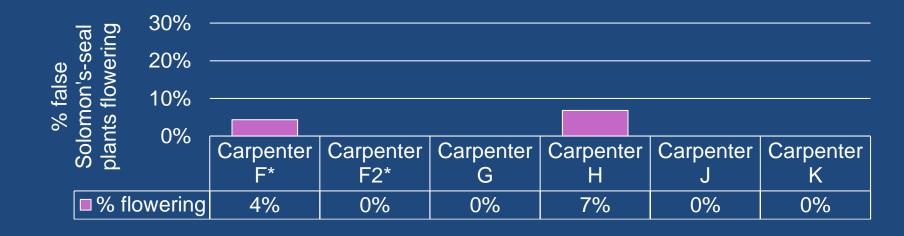
Unbrowsed: 12

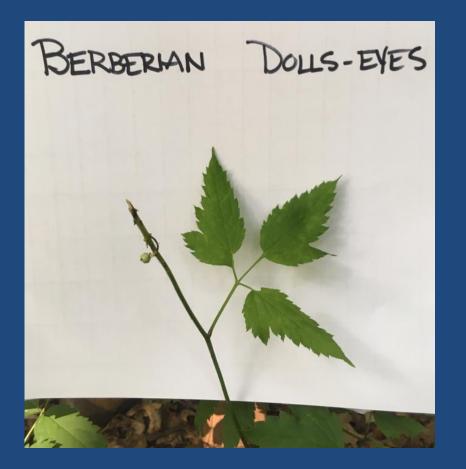
Browsed: 27 stems + 1 leaf

According to other studies...

Deer browse rates >10-15% likely to lead to population declines



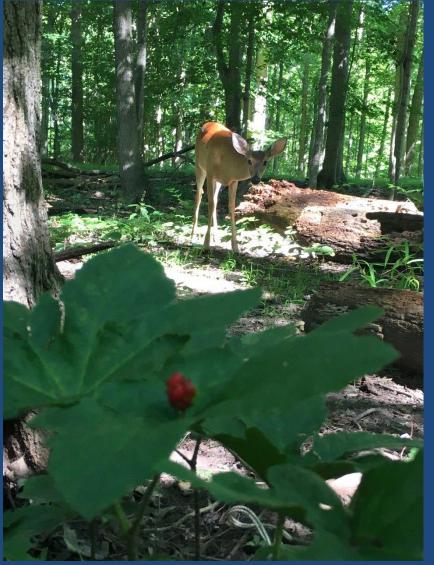



Flowering rates <30% suggest the need for deer management

High rates of deer browse are correlated with low rates of flowering

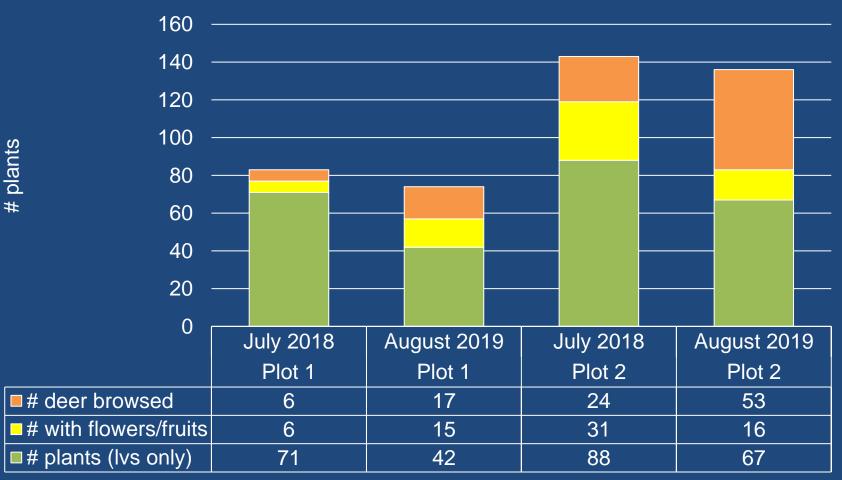


- 31 of 37 deer browsed (2018); only 11 fruits remaining (compared to 66 on 3 sheltered plants)
- 7 of 7 plants deer browsed (2019), but late in season so others might have died back



Bladdernut (A bee-loved shrub)

dead after browsing not recorded 2018


State threatened (protected) species: Goldenseal

Deer browset Abundance

2018-2019

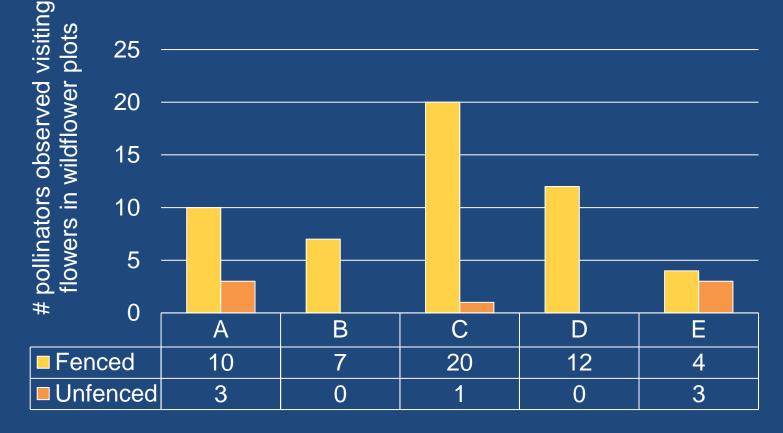
Overview

- Deer impacts on plant communities
 - Background
 - Research findings in Southfield
 - How are deer affecting trees?
 - How are deer affecting wildflowers?

-Implications

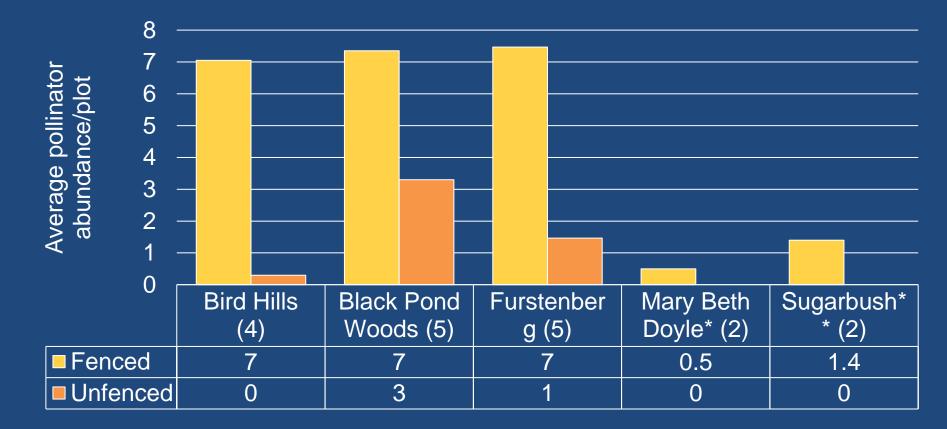
- Deer vs. other threats
- Options for managing deer impacts

Why does deer browse on tree seedlings matter?


- \downarrow tree seedling survival, growth
- \downarrow forest regeneration
 - oak regeneration a particular concern in NE U.S.
- "Forest disintegration"
 - Conversion to grasslands, ferns, sedges
 - Affects many species
- ↓ ecosystem services (water quality, flood & erosion control)
- Carbon sequestration

Why does deer browse on wildflowers matter?

- Reduced flowering, fruiting leads to reduced reproduction; over time, population declines
- Fewer resources for other species
 - Pollinators
 - Songbirds
 - Small mammals


Pilot study: where there are fewer flowers, fewer pollinators

Pilot study of pollinator visitors in 1 site, 5 plot pairs, 15-minute time intervals. Ann Arbor park, 10/5/2018

Fewer pollinators in deer-accessible unfenced plots, 2019

Pollinator abundance assessed 5 Ann Arbor parks in repeated 3-5 minute counts, 2-5 plot pairs per site (# in parentheses). * Few pollinators out during 2 visits. ** Just 2 unfenced plots had flowers.

Typical forest asters and goldenrods hard to find in Southfield parks

Bluestem goldenrod

Zigzag goldenrod

(Big-leaved aster)

Heart-leaved aster

Overview

- Deer impacts on plant communities
 - Background
 - Research findings in Southfield
 - Implications
- Deer vs. other threats
- Options for managing deer impacts

Multiple stressors: Not either/or, but both/and

- Deer are one of many stressors
 - Habitat destruction & fragmentation
 - Invasive species (including insects, disease)
 - Global warming/climate change
 - Acid rain, etc.
- Deer amplify the stresses
- Plants less able to recover, reproduce
- Fewer resources for other species

Overview

- Deer impacts on plant communities
 - Background
 - Research findings in Southfield
 - Implications
- Deer vs. other threats
- Options for managing deer impacts

Options for managing deer impacts

Option	Home landcapes	Natural areas	Possible outcomes
Do nothing	Х		Population controlled by vehicle crashes, starvation, disease
		Х	Lose plants, species, communities over time; convert to grasslands, novel ecosystems?
Plant deer- resistant species	Х		Varies over time, placedeer preferences not all the same
		Х	Grasses, sedges, ferns less damaged than wildflowers
Deer repellents	Х		Varying effectiveness; may need repeat application
		Х	Costly, impractical for large areas; need for repeat treatments
Fencing	Х	Limited	Costly, impractical for large areas; needs continued maintenance; indirect effects (more small mammal damage?)
Deer management	?	Х	Can protect natural areas with continued effort

Questions? jbcourteau@gmail.com

OUR EYE ON NATURE

ECOLOGICAL MONITORING
 CONSULTING
 WRITING

Acknowledgments

- Southfield staff: John Michrina (Deputy City Administrator); Kost Kapchonick (Parks & Operations Supervisor)
- Methods: Bernd Blossey, Cornell University; Don Waller, University of Wisconsin; Tom Rawinski, USFS
- Field technicians: Sam Holtzman; Manuel Anderson; Kyle Lough; Calvin Floyd; Jack Floyd; Ethan Hiltner; Irene Hochgraf-Cameron.

References (see also wc4eb.org)

Averill, KM, DA Mortensen, EAH Smithwick, E Post. 2016. Deer feeding selectivity for invasive plants. *Biological Invasions* 18 (5): 1247 DOI:

Floyd, M. A. 2014. *Trophic Cascade Effects of Deer Overabundance on Connecticut's Native Vegetation and Small Mammal Populations*. Master's Thesis. Paper 647. [1] http://digitalcommons.uconn.edu/gs_theses/647

Frerker, K. A. Sabo, and D. Waller. 2014. Long-term regional shifts in plant community composition are largely explained by local deer impact experiments. *PLoS ONE* 9(12): e115843. doi:10.1371/journal.pone.0115843.

Hines, S. 2016. Development of a biologically centered habitat-monitoring technique: SPIDER transect method. *Southeastern Naturalist* 15(3): 518–22.

Myers, JA, M Vellend, S Gardescu , and PLMarks. 2004.

Oecologia. 139(1): 35-44.

Pendergast, T.H., S.M. Hanlon, Z.M. Long, A.A. Royo, and W.P. Carson. 2016. The legacy of deer overabundance: long-term delays in herbaceous understory recovery. *Canadian Journal of Forest Research* 46(3): 362-369. 10.1139/cjfr-2015-0280

Rawinski, T.J. 2014. *White-tailed deer in Northeastern forests: Understanding and assessing impacts.* Report for U.S. Department of Agriculture Forest Service, Northeastern Area State and Private Forestry, **1999**. Reprinted January 2016 NA–IN–02–14. 28 p.

Rawinski, T.J. 2008. *Impacts of White-Tailed Deer Overabundance in Forest Ecosystems: An Overview*. Report for U.S. Department of Agriculture Forest Service, Northeastern Area State and Private Forestry Forest Service. June 2008. 8 p.

Rooney, T.P., and D.M. Waller. 2003. Direct and indirect effects of white-tailed deer in forest ecosystems. *Forest Ecology and Management* 181: 165–176.

Stohlgren T.J., L.D. Schell, & B.V. Heuvel. 1999. How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands. *Ecological Applications* 9: 45–4.

Strohmayer, K.A.K., and R.J Warren. 1997. Are overabundant deer herds in the eastern United States creating alternative stable states in forest plant communities? *Wildlife Society Bulletin* 25(2): 227–234.

Williams, SC, JS Ward and U Ramakrishnan. 2008.

Forest Ecology and Management. 255(3-4): 940-947.